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Abstract. This is the final publication of the ETH Zurich–Neuchâtel–PSI collaboration on the pi-
onic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3p–1s
measurement, report on the determination of the Doppler effect correction to the transition line
width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen
and deuterium results. From the pionic hydrogen 3p–1s transition experiments we obtain the strong-
interaction energy level shift ε1s = −7.108 ± 0.013(stat.) ± 0.034(syst.) eV and the total decay width
Γ1s = 0.868 ± 0.040(stat.) ± 0.038(syst.) eV of the 1s state. Taking into account the electromagnetic
corrections we find the hadronic πN s-wave scattering amplitude aπ−p→π−p = 0.0883 ± 0.0008m−1

π for
elastic scattering and aπ−p→π0n = −0.128 ± 0.006m−1

π for single charge exchange, respectively. We then
combine the pionic hydrogen results with the 1s level shift measurement on pionic deuterium and test
isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The
isoscalar and isovector πN scattering lengths (within the framework of isospin symmetry) are found to
be b0 = −0.0001+0.0009

−0.0021m
−1
π and b1 = −0.0885+0.0010

−0.0021m
−1
π , respectively. Using the GMO sum rule, we

obtain from b1 a new value of the πN coupling constant (gπN = 13.21+0.11
−0.05) from which follows the

Goldberger–Treiman discrepancy ∆GT = 0.027+0.012
−0.008. The new values of b0 and gπN imply an increase of

the nucleon sigma term by at least 9MeV.

1 Introduction

Quantum chromodynamics (QCD) is considered to be the
fundamental theory of the strong interactions. Important
symmetry properties of the theory, namely the chiral and
the isospin symmetry, can only be tested at low energies.

QCD reveals the spontaneous breakdown of chiral
symmetry (also referred to as a “hidden symmetry”): the
ground state is less symmetric than the hamiltonian of the
theory. In QCD with massless u- and d-quarks, the hamil-
tonian is symmetric with respect to the chiral-symmetry
group SU(2)R×SU(2)L which breaks down to the isospin-
symmetry group SU(2) in the ground state [1]. In this
approximation, there are three massless Goldstone bosons
(π−, π0, π+). In a next step, the (small) u- and d-quark
masses are turned on; as a result the pion acquires mass
(Mπ). Chiral perturbation theory (ChPT), which is an ex-
pansion in terms of Mπ and momenta, can then be used
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to calculate the low-energy hadronic properties in terms
of low-energy constants (LEC’s). ChPT provides the link
between the experimental data and QCD. Since the u-
and d-quark masses are different, there is – at some level
– breaking of the isospin symmetry of the strong interac-
tion.

Recently, substantial progress has been made in de-
veloping ChPT for the pion–nucleon (πN) system [2–8].
In this context the precision X-ray experiments on pio-
nic hydrogen [9,10] and pionic deuterium [11], carried out
by the ETH Zurich–Neuchâtel–PSI collaboration, are of
particular relevance for the following reasons. The results
from these experiments lead to a test of isospin symme-
try directly at threshold (without the need to extrap-
olate in energy) where the ChPT is supposed to work
best. Within the framework of isospin symmetry, we ob-
tain directly measured and precise πN (s-wave) scatter-
ing lengths; these can be confronted with recent ChPT
work. The isovector scattering length allows a new de-
termination of the πN coupling constant from which the
Goldberger–Treiman discrepancy is determined, testing
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Fig. 1. Experimental setup. Pion beam (πE5), cyclotron trap
with target cell (H2, Ar, Be), argon X-ray source for stability
monitoring (Ar), bent crystals of spectrometer (quartz(110))
with Bragg angle (ΘB) and detector system (CCD’s)

the chiral expansion. The nucleon sigma term (a quantity
accessible to ChPT and lattice calculations) is sensitively
affected by the new isoscalar scattering length.

In the present paper, we describe important details on
which the final results of our collaboration are based, and
draw conclusions from these results. In Sect. 2, the most
recent measurement of the 3p–1s X-ray transition in pi-
onic hydrogen [12] is reported in detail. A new way of
determining the Doppler effect which is needed for relat-
ing the measured line width to the decay width of the 1s
ground state is presented in Sect. 3, and compared with
earlier evaluations. We then combine (in Sect. 4) all pio-
nic hydrogen results with the strong-interaction shift mea-
surement of pionic deuterium [11], test isospin symmetry
and evaluate the πN scattering lengths. The implications
of the results will be discussed in detail.

2 Experiment and data analysis

2.1 Conception of the experiment

The measurement of the pionic hydrogen 3p–1s X-ray
transition was performed at the low-energy pion beam
(πE5) of the Paul Scherrer Institute (PSI) [12] with the
crystal spectrometer system described in [9,11,13] (see
Fig. 1). Pions from the πE5 beam at PSI are degraded
inside the cyclotron trap [14] which is a magnetic field
device designed to increase the stop density in the target
cell at its center. The X-rays from the target cell are mea-
sured with two bent crystal spectrometers mounted on top
of each other (with three quartz (110) crystals each). The
X-ray detector system consists of an array of charge cou-
pled devices (CCD’s) with a total of 3.6 million pixels. In

 
Fig. 2. Schematic level diagram of pionic hydrogen with the
3p–1s X-ray transition and the decay of the (π−, p)1s ground
state. The strong-interaction shift ε1s for pionic hydrogen is
negative (attractive interaction)

addition to the cryogenic gaseous H2 target cell (15 bar
equivalent), an argon electronic X-ray source for energy
calibration and one for stability monitoring (Ar in Fig. 1),
together with a beryllium pionic X-ray target for measur-
ing the spectrometer resolution curve (Be in Fig. 1) are
used.

The transition energy (Emeas.
3p-1s ) was determined by

measuring the Bragg angle difference relative to the well-
known electronic argon Kα1 X-ray line [15]. The strong-
interaction shift ε1s is defined by (see Fig. 2)

ε1s = Eel.mag.
3p-1s − Emeas.

3p-1s , (1)

where Eel.mag.
3p-1s is the electromagnetic transition energy

calculated in the absence of the strong interaction [16]
(the strong-interaction shift of the 3p state is negligible).
The shift ε1s, thus defined, is not yet a purely hadronic
quantity. In order to arrive from ε1s at the hadronic s-
wave amplitude aπ−p→π−p for elastic π−p scattering, the
so-called electromagnetic corrections have to be applied
[16]. These include the change of the transition energy
due to the modification of the pion wave function by the
strong-interaction potential, the mass-splitting effect (the
continuum final states (π0, n) of the decaying (π−, p) 1s
bound state modify slightly the energy of the bound state)
and the corresponding effect with the continuum final
states (γ, n) (Fig. 2). In [16] the relation between ε1s and
aπ−p→π−p was established numerically, by using an at-
tractive strong-interaction potential for the isospin 1/2
channel and a repulsive potential for isospin 3/2. Isospin
symmetry of the strong interaction is assumed throughout
the analysis. The strong-interaction pion mass (Mπ) is as-
signed (by convention) to be that of the (physical) charged
pion mπ = 139.56995 ± 0.00035MeV. The result can be
expressed for convenience in terms of an electromagnetic
correction δε = (−2.1±0.5)×10−2 to a Deser-type formula
[17]:

ε1s
E1s

= −4aπ−p→π−p

rB
(1 + δε), (2)
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where E1s is the point-Coulomb electromagnetic binding
energy of the 1s level and rB = 222.6 fm the Bohr radius;
E1s/rB = 14.53 eV/fm1.

The transition line width (Γmeas.
3p-1s ) was determined by

deconvoluting the measured line shape with the instru-
mental resolution function of the spectrometer (Sect. 2.4).
The resolution function is obtained from a measurement
of the 4f–3d X-ray line of pionic beryllium of which the
natural line width is very small. The quantity Γmeas.

3p-1s is
dominated by the decay width Γ1s of the 1s state. It is,
however, affected by the Doppler broadening of the 3p
initial state of the X-ray transition (see Sect. 3). Since the
natural width of the 3p state is negligibly small, the rela-
tion between the measured line width and the decay width
of the 1s state depends on the Doppler effect only. We de-
fine this relation by the equation

Γmeas.
3p-1s
Γ1s

= 1 +∆3p. (3)

Section 3 is devoted to an evaluation of the Doppler cor-
rection ∆3p.

The total decay width Γ1s of the 1s state is determined
by the rate of the single charge exchange (SCX) reaction
(π−p)1s → π0n and the radiative decay (π−p)1s → γn
(Fig. 2). The ratio of the two decay rates is the Panofsky
ratio P = 1.546± 0.009 [19]. Using this value we can thus
express Γ1s in terms of the hadronic s-wave amplitude
aπ−p→π0n for SCX scattering. In addition, we take into
account the (small) electromagnetic corrections [16]. As
explained above, the relation between Γ1s and aπ−p→π0n

was investigated in [16] numerically. The result can again
be expressed in terms of an electromagnetic correction
δΓ = (−1.3± 0.5)× 10−2 to a Deser-type formula:

Γ1s
E1s

= 8
q

rB

(
1 +

1
P

)[
aπ−p→π0n(1 + δΓ )

]2
, (4)

where q = 28.04MeV/c (equivalent to 0.1421 fm−1 in
units � = c = 1) is the center of mass momentum of
the π0 in the SCX reaction.

2.2 Experimental improvements

The improvements in the present experiment [12] as com-
pared to the earlier measurements [9] are listed here.

An increase of the pionic X-ray rate (by a factor of
two) resulted from an optimized tune of the beam line and
the cyclotron trap, together with the enhanced primary

1 In a recent paper [18] ChPT was used to calculate the elec-
tromagnetic correction δε. The authors claim that “... O(p2)
calculations in ChPT strongly deviate from the predictions of
the potential model” [16]; their result differs from ours by 1.3
standard deviations. Moreover, their result does not contain
quantitatively important contributions, such as the mass split-
ting effect, the γn-channel and the interference between vac-
uum polarization and strong interaction. In their own words:
“It remains to be seen, how the O(p2) result in ChPT is altered
by the loop corrections

proton current. Three times more events were collected.
The signal-to-noise was improved by a factor of two, as
a result of the shielding of the CCD’s with aluminium
foils against the steel flange of their mounting (in order to
reduce the iron and chromium X-ray lines) and a massive
shielding between spectrometer and πE5 beam line.

A new beryllium target was built, consisting of ten 0.02
mm thick, 40 mm diameter beryllium foils mounted in par-
allel. The surfaces of the foils were nearly perpendicular
to the direction target-cell–bent crystal (see Fig. 1) but
slightly tilted, in order to maximize the average amount
of beryllium seen by the incident pions.

An improvement of the spectrometer resolution was
achieved by a careful alignment of the individual crystals,
using the electronic Kα1 X-ray line of zinc (8.6 keV) in 3rd
order Bragg reflection. This line matches the 3p–1s pionic
hydrogen line nearly exactly in angle.

The long term geometrical and thermal stabilities have
been carefully investigated and controlled during the en-
tire measuring period, e.g. with frequent argon calibration
measurements. From a temperature measurement in the
vicinity of the crystals we conclude that the effect of lat-
tice spacing variation with temperature corresponded to
a variation in energy of less than 1meV.

The lattice constants of all individual crystals of the
spectrometer have been measured in the bent state; all
measured values were within the uncertainties given in
(11).

2.3 Event selection and position spectra

CCD’s with a pixel size of 22.5µm× 22.5µm and a deple-
tion depth of about 30µm are excellent photon detectors
in the energy region around 2.9 keV [20,21]. The essential
feature is that a photon of 2.9 keV deposits its energy (in
85% of the cases) in one single pixel. Since most back-
ground events, which outnumber the true X-ray events
by typically four orders of magnitude [9], are multi-pixel
(cluster) events, the pionic hydrogen X-ray events can be
singled out efficiently by demanding an energy deposit of
the appropriate amount in one single pixel.

In a first step of the data analysis, all pixels con-
taining an accumulated charge above a (lower) threshold
corresponding to 1.2 keV deposited energy were selected
as candidates for an X-ray hit, if the charges of their
eight surrounding pixels were consistent with the noise
level (single-pixel criterion [22,20]). The Kα1 peak of the
argon calibration measurement was used for the energy
calibration of the measured charge. Figure 3 shows the
energy spectra from one of the CCD’s, i.e. the number
of single pixel events as a function of their accumulated
charge, for the pionic hydrogen run, a, the pionic beryl-
lium run, b, and an argon measurement, c. In Figs. 3a,b
the electronic Kα lines of aluminium (at 1.5 keV) and sil-
icon (at 1.7 keV) are seen; they originate from the alu-
minium shielding around the CCD’s and the silicon of the
CCD’s, respectively. Figure 3c shows, in addition to the
silicon Kα line, an escape peak at 1.2 keV (an argon Kα

X-ray of 2.9 keV produced a hole in the silicon K-shell
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Fig. 3a–c. Energy spectra for one CCD: number of single-pixel
events as a function of their accumulated charge, expressed in
energy units (1 channel corresponds to 10 eV). a Pionic hydro-
gen; b pionic beryllium; c argon Kα. (Note that the energy
scale in a and b starts at 1.2 keV)

and the subsequently emitted silicon Kα X-ray (1.7 keV)
escaped detection) and the “double hit” line produced by
two argon Kα X-rays hitting the same pixel.

In the second step of the data analysis, a narrow energy
cut around the energy deposited by the pionic X-rays was
applied, as shown in Figs. 3a,b. The events within these
cuts (vertical lines in the figures) have been used to cre-
ate the position spectra, i.e. the line profiles for the pionic
X-ray analysis. These profiles were obtained by project-
ing the selected single pixel events onto the local CCD
x-axis (Sect. 2.5). The position spectra thus obtained are
displayed in Figs. 4, where the line profiles of all (four)
CCD’s have been added. In this procedure, the position of
the CCD’s relative to each other and the slight curvature
of the profiles were taken into account [9,11]; a binning
of five pixels per channel is used. Figure 4a shows the pio-
nic hydrogen 3p–1s transition, Fig. 4b the electronic argon
Kα line and Fig. 4c the pionic beryllium 4f–3d transition.
The broadening of the 3p–1s X-ray line is clearly visible
(comparing Fig. 4a with c).

2.4 The transition line width Γ meas.
3p-1s

In order to obtain the instrumental resolution function
of the spectrometer from the measured 4f–3d beryllium
line (Fig. 4c), a number of effects of line broadening were
investigated and taken into account.

As a first step, the neighboring 4d–3p line (see Fig. 4c)
was removed by fitting to both lines the same analytical
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Fig. 4a–c. Position spectra (line profiles): number of single-
pixel events with the proper amount of charge, projected on
to the x-axis of the CCD’s. The units are counts per channel
versus channel number. One channel corresponds to 5 pixels.
a Pionic hydrogen 3p–1s transition; b electronic argon Kα line;
c pionic beryllium 4f–3d and 4d–3p transitions. (One channel
is equivalent to 0.088, 0.101 and 0.080 eV for the measurements
a, b and c, respectively)

function (two Gaussian profiles) and subtracting the weak
component.

The 4f–3d line is broadened by the magnetic dipole
and electric quadrupole hyperfinestructure (hfs) splitting
of the pionic 3d state. The hfs splitting of the 4f state,
however, can be neglected. From the data of [23] the hfs
components and the relative intensities of the lines for
9Be have been calculated; the level splittings are between
11meV and 95meV [12].

An additional broadening could result from different
electronic K-shell populations during the various 4f–3d
pionic X-ray decays in the solid state environment (in con-
trast to a dilute gas where electrons are stripped off the
pionic atom). There are three possible states ofK-shell oc-
cupation, namely zero, one and two K-electrons present.
Due to the electron screening of the nuclear charge, the X-
ray transition energy is lowered by 96meV per K-electron
present [24]. The electron screening effect would cause
a 4f–3d line broadening if (and only if) more than one
K-shell occupation state occurs. An indication of the K-
shell populations is obtained by comparing the theoreti-
cal 4f–3d transition energy, calculated for an empty K-
shell (2844.193±0.007 eV [25]) with (the center of gravity
of) the measured transition energy, namely 2843.974 ±
0.009(stat.) ± 0.043(syst.) eV. The difference of 219 ± 50
meV indicates that on the average two K-electrons are
present, in which case the shifted lines would be unbroad-
ened. Small contributions from components with zero and
one K-shell electron can, however, not be excluded com-
pletely.

The 3p state is broadened due to its decay width which
is dominated by the Auger width of 9meV (the radiative
width is less than 1meV).

The instrumental resolution function can be described
by an analytical function consisting of two Lorentzians
with free parameters for height, width and position, i.e. a
total of six free parameters. The hfs lines with known sep-
aration and relative intensity were fitted (using the resolu-
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     Fig. 5. Best fit to the pionic hydrogen data of the convolution
of the natural line shape and the resolution function on a flat
background. One channel corresponds to 5 pixels (equivalent
to 0.088 eV). (The first and the last 5 channels were not used
for the fit because of “blind” pixel lines)

tion function) to the measured 4f–3d beryllium line. The
beryllium line could be described perfectly with a separa-
tion of 4.3 channels between the two Lorentzians and an
intensity ratio of 1 : 1.6. The FWHM of the complete in-
strumental resolution function was found to be 7.13 chan-
nels, corresponding to 568meV. (Note that for the decon-
volution of the measured pionic X-ray line the whole line
shape matters, not merely its width.)

In order to obtain the transition line width Γmeas.
3p-1s and

the peak position of the pionic hydrogen 3p–1s transition,
the convolution of a Lorentzian, assumed to describe the
line shape of the 3p–1s transition, with the instrumen-
tal resolution function was fitted to the hydrogen data
(Fig. 4a), assuming a constant background. Figure 5 shows
the best fit to the pionic hydrogen data.

In order to investigate the possible influence of dif-
ferent resolution functions on the transition line width
and the peak positions of the various lines, a Monte Carlo
study was undertaken. Based on the covariance matrix of
the six parameters describing the instrumental resolution
function, obtained from the best fit to the beryllium 4f–3d
data, a random sample of 10 000 different parameter sets
have been generated, taking the correlations between the
parameters explicitly into account. For all sets the con-
volution of the resolution function with the natural line
shape was fitted to the hydrogen and argon data, yielding
10 000 different values for the line width, the peak posi-
tions and the corresponding fit errors.

Figure 6 displays the distribution of the widths result-
ing from the convolution of the 10 000 different resolu-
tion functions with the natural hydrogen (single Lorentz)
line. A Gaussian fit to this distribution gives the result
Γmeas.
3p-1s = 10.68± 0.31 channels, corresponding to 0.935±

0.027 eV. The quoted error is due to the statistical uncer-
tainty of the resolution function. The fit error was found to
be 0.49 channels or 0.043 eV, independent (within 5meV)
of the resolution function. The total statistical error of
the width is the quadratic sum of the statistical error
of the resolution measurement (Fig. 6) and the fit error
(statistical error of the hydrogen measurement). The re-
sult is: Γmeas.

3p-1s = 0.935 ± 0.051(stat.) eV. After correction
for the Auger width of the pionic 4f–3d calibration line

    

Fig. 6. The pionic hydrogen 3p–1s transition line width and its
uncertainty due to the statistical fluctuations of the resolution
function (Monte Carlo study). The number of fits for different
resolution functions per unit of energy is shown; one channel
corresponds to 0.088 eV

Table 1. Transition line width Γmeas.
3p-1s and transition energy

Emeas.
3p-1s , in units of eV. Statistical and systematic errors are

given in the first and second bracket, respectively

Γmeas.
3p-1s Emeas.

3p-1s reference

0.953 (0.051) (0.010) 2885.910 (0.015) (0.031) this work
1.029 (0.100) 2885.935 (0.028) (0.035) [9]

0.969 (0.045) (0.010) 2885.916 (0.013) (0.033) average

(9 ± 6meV) and taking into account the systematic un-
certainty of the electron screening effect (9 ± 9meV), we
obtain the result of this experiment

Γmeas.
3p-1s = 0.953± 0.051(stat.)± 0.010(syst.) eV. (5)

In Table 1 we compare this value with the result of
the earlier experiment [9]; the results are compatible. We
obtain the final result by taking the weighted mean:

Γmeas.
3p-1s = 0.969± 0.045(stat.)± 0.010(syst.) eV. (6)

2.5 The transition energy Emeas.
3p-1s

The transition energy is determined from the wave length
of the 3p–1s pionic hydrogen X-ray line which is obtained
from a Bragg angle difference measurement relative to the
electronic argonKα1 X-ray line of known wave length [15].

The bent crystal assembly (Fig. 1) is mounted on a
turntable of which the axis of rotation is vertical and lies
in the front surface of the central crystal of the lower (bot-
tom) spectrometer (see Fig. 7). The CCD detector system
is mounted on an XY cross slide (XY -table) allowing for
horizontal motion in the two (perpendicular) directions X
and Y . Between successive argon and hydrogen measure-
ments the CCD system is moved on the XY -table from
the “argon position” (Fig. 7) to the “hydrogen position”.
The (space-fixed) target (X-ray source), the turntable and
the XY -table are positioned in such a way that the cen-
ters of the target, the crystals and the CCD’s of the lower
spectrometer are all at the same height; they define the
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Fig. 7. Geometrical relations between target, bent crystal as-
sembly and CCD detector unit (top view)

horizontal plane Z = 0 (called “bottom plane”) of a space-
fixed spectrometer reference frame (X,Y, Z). The origin O
of the reference frame is at the center of the CCD’s of the
lower spectrometer, at the argon position of theXY -table;
the rotational axis of the turntable lies in the Y Z plane.
In order to have the argonKα doublet line centered on the
CCD, the argon position is defined by the Bragg angle Θ0
which corresponds to the mean position of the Kα1 and
Kα2 lines (see Fig. 7). The elaborate procedure for prop-
erly aligning the crystal assembly on the turntable and the
CCD’s on the XY -table with respect to the target makes
use of a narrow light beam in combination with various
optical elements. The individual steps of the alignment
procedure are described in [26].

From Fig. 7 we read off the geometrical relations

ΘH + t = Θ0 + arctan
∆X +∆xH
f +∆Y

, (7)

ΘAr = Θ0 + arctan
∆xAr
f

. (8)

Here ΘH is the Bragg angle corresponding to the peak
position of the 3p–1s X-ray line of pionic hydrogen, Θ0
is the Bragg angle corresponding to the mean position
between the peaks of the Kα1, Kα2 X-ray lines of argon,
ΘAr is the Bragg angle of the peak position of the argon
Kα1 line, t is the angle difference on the turntable between
the argon and the hydrogen position, and∆X and∆Y are
the displacements (in X and Y direction) of the XY -table
between the two positions. TheX-axis of the spectrometer
reference frame in the argon position defines the x-axis
fixed to the CCD unit with respect to which all position
spectra were registered and analyzed. The peak positions
∆xAr and ∆xH (Fig. 7) are measured along this x-axis. In
the spectra displayed in Figs. 4 and 5, the origin of the
x-axis was moved to the left-hand edge of the CCD. The

distance f between the rotational axis and the CCD in
the argon position (Fig. 7) is directly measured [26] and
corresponds to the focal length of the argon Kα X-rays
with respect to the bent crystals.

The Bragg angle difference follows from (7) and (8):

∆ΘB ≡ ΘH −ΘAr

= arctan
∆X +∆xH
f +∆Y

− arctan
∆xAr
f

− t. (9)

(Note that the angle Θ0 does not enter.)
Bragg’s law in the usual form,

λ = 2d sinΘB, (10)

does not account for the slight bending of the X-rays in the
transition between the material of the crystal and air, nor
for the small change of the wave length inside the quartz
crystals (refractive index correction). The refractive index
correction has been applied as described in [9].

The lattice spacing for the (110) quartz crystals (at
20.5◦C) is

d = (2.45670± 0.00020) Å. (11)

The uncertainty represents the variations of the lattice
spacings of the individual crystals. The energy of the argon
Kα1 line, as measured by Schweppe [15], is

EKα1 = (2957.685± 0.019) eV. (12)

The data registered with the top spectrometer, with
its central plane (called “top plane”) inclined by 4◦ with
respect to the bottom plane [9], require a series of addi-
tional geometrical corrections (see [26,11]).

From the combined data of both spectrometers, using
(11) and (12), the transition energy from this experiment
is found to be

Emeas.
3p-1s = 2885.910± 0.015(stat.)± 0.031(syst.) eV. (13)

Averaging (weighted with the statistical error) with the
result from the earlier experiment (see Table 1), we obtain
the final result

Emeas.
3p-1s = 2885.916± 0.013(stat.)± 0.033(syst.) eV. (14)

3 Atomic cascade processes

3.1 Introduction

The pionic atom formation can be described by the sim-
plified capture process in which the orbital motions in the
atoms are treated with the Bohr model. In a first phase,
the negative pion is slowed down until it reaches the ve-
locity of the atomic electron of hydrogen (with the Bohr
radius rB(el.)). The bound electron of hydrogen is then
replaced by the negative pion at the distance rB(el.) from
the proton, thus

π− + (e−p)n=1 → (π−p)n + e−. (15)
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In this process angular momentum and energy are con-
served. The principal quantum number of the pionic atom
state in (15) is n ≈ (mπ/me)1/2 ≈ 15. Pionic hydrogen
in this highly excited state then proceeds through vari-
ous atomic cascade reactions and decays, until the atom
reaches the (initial) 3p state from which the observed X-
ray is emitted.

Detailed theoretical calculations of cross sections, ini-
tial quantum number and kinetic energy distributions for
pionic atom formation by negative pions from molecular
hydrogen have been performed very recently by Cohen
[27]. The order of magnitude of the results is nicely repro-
duced by the simplified process described above.

At the density of the hydrogen target used in the ex-
periment (pressure equivalent to 15 bar), the atomic colli-
sional processes with the neighboring hydrogen molecules
dominate by far the radiative transition rates in the upper
part of the cascade. Since the average partial lifetime of a
pionic atom for radiative decay, e.g. in the state n = 14 is
about 20 ns (Fig. 7 of [28]; see also [29]), which is compara-
ble to the lifetime of the pion, the much faster atomic pro-
cesses ensure that the system reaches the 3p state before
decaying. Despite of their dominance in the upper part of
the cascade, the atomic processes have but a small effect
on our experimental results. This is related to the fact
that (at 15 ρSTP) the pionic hydrogen atom spends most
of its lifetime between the collisions in free space. Dur-
ing the short-time collisions with the hydrogen molecules,
the pionic atom feels the strong molecular electric fields.
One can show with a simple calculation, however, that the
shift of the n = 3 atomic level due to Stark effect of second
order is negligibly small. The broadening of n = 3 level
due to the first-order Stark effect (no level shift) is also
negligible.

In the context of our experiment, there are two main
effects of the atomic cascade processes. On the one hand,
the Stark effect mixes pionic hydrogen states with differ-
ent angular momentum l and the same principal quantum
number n according to the reaction

(π−p)nl +H2 → (π−p)nl′ +H2. (16)

This process is called “Stark mixing”. From the ns state
(the π− overlaps with the proton), the pionic atom can
disappear by the nuclear capture reactions

(π−p)ns → π0 + n or → γ + n. (17)

Since at 15 bar the nuclear capture rate is much larger (in
the s state) than the Stark mixing rate, the atom always
disappears by nuclear capture once the s state is reached.
On the other hand, the measured Kβ X-ray line shows a
small broadening due to the Doppler effect which is the
result of several atomic cascade processes (including reac-
tion (15)).

The atomic cascade processes relevant to the present
work are listed in Table 2. More details can be found in
the recent review by Markushin [29].

Table 2. Processes and corresponding reactions in the pionic
atom cascade

Process Reaction

Nuclear capture (π−p)ns → π0 + n or → γ + n

Stark mixing (π−p)nl + H2 → (π−p)nl′ + H2

Coulomb deexcitation (π−p)n + H → (π−p)n′ + H (n′ < n)
External Auger effect (π−p)n,l + H2 → (π−p)n′,l±1 + H+

2 + e−

Elastic scattering (π−p)nl + H2 → (π−p)nl′ + H2

Radiative transition (π−p)n,l → (π−p)n′,l±1 + γ

Table 3. Kinetic energy gain of a pionic hydrogen atom per
CD transition, calculated from the binding energy differences
∆Eπ−p

binding of the pionic atom states

Transition ∆Eπ−p
binding Energy gain

n → n − 1 in eV in eV

7 → 6 24 11
6 → 5 39 18
5 → 4 73 34
4 → 3 157 73
3 → 2 450 210

3.2 The Doppler effect

Measurements of the neutron time-of-flight after nuclear
capture in liquid hydrogen show a clear Doppler broad-
ening of the π−p → π0n neutrons, corresponding to a ki-
netic energy distribution of the π−p atom of up to 200 eV
at the moment of the pion capture [30,31]. The only cas-
cade process capable of producing such “high energies” is
Coulomb deexcitation (CD) (see Table 2). This process can
be viewed as “inelastic Stark mixing”: The pionic-atom
state in the molecular electric field mixes with another
pionic-atom state of different principal quantum number.
(For the reason of energy conservation it must be a state of
lower n value.) Assuming that the second hydrogen atom
of the molecule acts as a spectator, the released energy is
shared almost equally between the pionic atom and the
first hydrogen atom. Transitions of the type n → (n − 1)
dominate2. Table 3 shows the kinetic energy gained by
the pionic hydrogen atom as a result of a CD transition
n → (n− 1).

If a pionic atom at the moment of the 3p–1s X-ray
transition has a kinetic energy of, for instance, 73 eV (fol-
lowing a 4 → 3 CD transition), then the corresponding
X-ray energy would be Doppler shifted by a maximum of
1.06 eV. Since this shift is comparable to the decay width
of the 1s level, it is clear that the investigation of the
Doppler effect is important.

As opposed to the CD process, elastic scattering be-
tween the pionic atom and the surrounding hydrogen
molecules (Table 2) leads to a decrease in the kinetic en-
ergy of the atom.

2 The Coulomb deexcitation process has been predicted early
by Leon and Bethe [32] (see also [33])
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 Fig. 8. Rates (transition probability or reaction probability
per unit of time) of the main processes in the n = 3, l = 1, 2
levels of pionic hydrogen, in gaseous hydrogen at 15 ρSTP, as
a function of the π−p kinetic energy T . The values are those
used in [12], in the atomic cascade code of Markushin et al.
[45]

It is the interplay between the CD process and elastic
scattering which determines the actual Doppler broaden-
ing of the 3p–1s line. The other cascade processes, such as
the external Auger process (Table 2), have only small ef-
fects on the kinetic energy distribution of the pionic atom.

At present it cannot be excluded that the CD transi-
tion could be part of a multi-step process involving molec-
ular hydrogen states [34–36]. Such a possibility is not con-
sidered here.

3.3 Recent developments

An improved neutron time-of-flight experiment has re-
cently been performed at PSI [37] in order to obtain (ex-
perimentally) more information on kinetic energy distri-
butions of the π−p system in hydrogen targets. In liquid
and – most importantly – also in gaseous targets, kinetic
energy distributions of the pionic hydrogen atoms have
been determined.

On the theoretical side, cross sections for the CD pro-
cess have recently been calculated by a number of authors
[38–43]. The results, however, are partly conflicting. For
this reason, we have devised a new method for calculating
the Doppler correction which relies as much as possible on
experimental observations (see Sect. 3.4). Since the den-
sity of liquid hydrogen is rather different from that in the
(gaseous) hydrogen target of the X-ray experiment, we
use for the new method experimental data from gaseous
hydrogen targets exclusively.

3.4 Calculation of the Doppler correction ∆3p

The Doppler correction ∆3p, defined by (3), is determined
here mainly from the neutron time-of-flight experiment

Coulomb deexcitation 4 3

Absorption

1s

2s

3s

radiative 3p 1s

2p

3p , 3d

radiative 3d 2p

Auger

 

Fig. 9. Schematic diagram for pionic hydrogen showing the
population process of the n = 3 levels (Coulomb deexcitation
n = 4 → 3) and the decay modes of the “mixed” 3p, 3d state

[37] with the gaseous hydrogen target (pressure 40 bar)
and the X-ray yields measured in a hydrogen target of
15 bar [44]. The theoretical cross sections of the cascade
processes (see Fig. 8) are only used weakly, mostly in order
to decide about the relative importance of different cas-
cade processes. Whenever absolute values of theoretical
cross sections are needed, conservative uncertainty mar-
gins are assigned.

(1) Cross sections. Inspection of Fig. 8 shows that the
Stark mixing rate dominates by far all other rates. From
this fact we conclude that, whenever the 3p or the 3d state
are populated, they are then mixed by the Stark effect be-
fore any other process occurs. As far as the depopulation
of the 3p and 3d states is concerned, we can therefore
assume that both states constitute a complete statistical
mixture from which their decay occurs. The mixed 3p and
3d states are indicated by the rectangle in Fig. 9. Further-
more, Fig. 8 shows that the effective absorption rate dom-
inates over the radiation, elastic scattering, Auger-effect
and CD rates. (The CD rate – not shown in Fig. 8 – is
below the Auger rate.) The rate for effective absorption is
defined as the transition probability per unit of time for
a state of the rectangle, to decay by nuclear capture via
Stark mixing to the 3s state. The decay by absorption is
therefore the dominant depopulation mode of the mixed
3p, 3d states, followed by radiative decay and Auger effect
(see Fig. 9).

The main cause for the Doppler broadening of the 3p–
1s X-ray transition is the CD process 4 → 3, leading to
a kinetic energy increase of the atom by 73 eV (Table 3).
Let us consider a pionic atom which has just decayed into
the 3p or 3d state by a CD process 4 → 3. Since the rate
for elastic scattering is much smaller than the effective ab-
sorption rate (Fig. 8), the energy loss by elastic scattering
with the surrounding hydrogen molecules plays no role;
the mixed 3p, 3d state will decay with a kinetic energy of
73 eV. The conclusion from this consideration is that, once
a pionic atom has gained kinetic energy through the CD
process, it will keep it.

(2) CD yields. In this part we aim at a determination of
the kinetic energy distribution of the pionic atoms at the
moment of the 3p–1s X-ray transition.
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We consider first the population of the statistically
mixed 3p, 3d states by the CD process 4 → 3 (Fig. 9) and
calculate the fraction per atom formed (yield) YKβ(73) of
3p–1s X-ray decays whose atoms have acquired an energy
of 73 eV. We can write

YKβ(73) = YCD(4 → 3)
8
9

3
8λKβ

λtotal(73)
. (18)

Here YCD(4 → 3) is the fraction of pionic atoms un-
dergoing a 4 → 3 CD transition per pionic atom formed
(at the hydrogen target pressure of the experiment). The
statistical factor 8/9 (the weight is (2l+ 1) per l state) is
the fraction of pionic atoms (having undergone a 4 → 3
CD transition) which decay from a 3p, 3d state (Fig. 9).
The remaining fraction of 1/9 is transferred (immediately)
by Stark mixing to the 1s state, before any decay occurs.
This follows from the dominance of Stark mixing discussed
above. In (18) λKβ is the rate (transition probability per
unit time) for a 3p–1s X-ray transition and λtotal(73) is
the total decay rate of a mixed 3p, 3d state (by absorption,
radiation and Auger effect) for a pionic atom with 73 eV
kinetic energy. The statistical factor 3/8 is the probability
that the 3p component of the mixed state is realized. The
factor (

3
8
λKβ

)
/(λtotal(73))

is thus the fraction of 3p–1s X-rays per decay of the (sta-
tistically mixed) 3p, 3d state.

The total decay rate can be written as

λtotal(73) = λtotalrad + λabs(73) + λAuger(73), (19)

where the first term is the total decay rate of the mixed
3p, 3d state by radiation, λabs(73) is the effective absorp-
tion, i.e. the absorption rate of the mixed n = 3 state,
and the last term is the Auger decay rate of the (mixed)
3p, 3d state. It is understood that all values are to be taken
for the hydrogen target density of the present experiment
(15 bar). The important term in (19) – apart from the
well known radiative rate and the small Auger rate – is
the absorption rate. We use the values in Fig. 8 [45,12]

λabs(73) = (1.3± 0.7)× 1011 s−1, (20)

where we have assigned an error band from −50% to
+150%, λtotalrad = 0.26 × 1011 s−1 and λAuger(73) = 0.02 ×
1011 s−1. These (quite conservative) errors reflect the un-
certainties in the calculations of the effective absorption
rate. The values of [45], for which no errors are given,
differ by about 25% from the values for n = 3 of [32].
It should be noted that both calculations are performed
in the “straight-line approximation”, assuming no devi-
ation from the straight-line path of pionic hydrogen in
its passage through the hydrogen atoms. (In [12] devia-
tions from the straight-line path below kinetic energies
of 10 eV are considered; this effect, however, should be
small at 73 eV.) The Kβ rate (to be used in (18) [12]) is
λKβ = 0.398× 1011 s−1.

We intend to use the yield YCD(73) in (18) from the
experiment of [37]. Since that experiment was performed

Table 4. Yields (Y ) and fractions (F ) of pionic atoms with
energies 73, 34 and ≈ 1 eV, respectively, at the instant of the
3p–1s X-ray transition, and the uncertainties in the Doppler
correction from the three groups of energies

Ei [eV] YKβ(Ei) FKβ(Ei)[%] Uncertainty in ∆3p

73 0.0057 15.1 ±0.041
34 0.00088 2.3 ±0.008
≈ 1 82.6 ±0.017

at 40 bar, we have to scale the result to the pressure of
the pionic hydrogen experiments (15 bar). This is done by
using the cascade code of [45] with parameter values as
determined earlier [28,12]. The result is that the yield at
40 bar has to be multiplied by the factor 0.69 in order to
obtain the yield at 15 bar.

From the experiment [37], we obtain the yield at 40 bar

YCD(73) = 0.10± 0.04. (21)

The value for this yield quoted in [37] is 0.10 ± 0.02. In
order to account for the uncertainty in the pressure scaling
factor (0.69), the error was increased to the value given in
(21).

All the above values are inserted in (18); they lead to
the fraction of 3p–1s X rays per pionic atom formed3,
having a kinetic energy of 73 eV

YKβ(73) = 0.0057. (22)

The result (22) is displayed in Table 4.
Next we consider the population of the 3p, 3d states

(Fig. 9) by the CD process 5 → 4, leading to a gain in
kinetic energy of 34 eV. As before, we make use of the
yield measured by the neutron time-of-flight experiment
[37]

YCD(34) = (0.14± 0.06)%, (23)

where the assigned error again takes account of the un-
certainty of the calculated pressure scaling factor. With
the same method as before, we calculate the correspond-
ing yield YKβ(34) per atom formed. The calculation in
this case is somewhat more involved because the effective
absorption now takes place from the n = 4 as well as
the n = 3 level. This is also the reason why the yield is
considerably smaller than in the former case, in spite of
the fact that YCD(5–4) and YCD(4–3) are comparable in
magnitude. We find the value (also shown in Table 4)

YKβ(34) = 0.00088. (24)

Since the CD processes populating levels with n > 5
are expected to be less important for the Doppler broad-
ening of the Kβ X-ray line, we assume that the remaining
CD processes contribute to a narrow band of kinetic en-
ergy extending from zero to a value of about 1 eV; the
energy band is of rectangular shape. These assumptions

3 The calculation of the uncertainties will be carried out in
the next part below
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are supported by calculations with the cascade program
of [45] (see [12]). In the context of the error calculation of
the Doppler correction (see below), the maximum value of
the kinetic energy distribution will be varied within cer-
tain limits.

Finally, in order to obtain the fraction FKβ of pionic
atoms having a given kinetic energy (see Table 4) from the
yields YKβ , we make use of the (absolute) Kβ X-ray yield
(per atom formed) which is reported in [44]:

YKβ(15 bar) = 0.0380± 0.0044. (25)

With the value (25) we obtain the fractions FKβ(Ei) given
in Table 4. (The entry in the last line corresponds to a
maximum value of the kinetic energy T1 = 1 eV.)
(3) Doppler correction. With the kinetic energy distribu-
tion of the pionic atoms obtained above we calculate the
Doppler broadening of the Kβ X-ray line. The energy dis-
tribution consists of three components, a (rectangular) low
energy distribution extending from zero to T1 = 1 eV and
two discrete peaks at 34 and 73 eV, respectively (Table 4).

The kinetic energy distribution was transformed in the
usual way into a Doppler shift distribution for a monochro-
matic line at the Kβ-energy. This distribution was folded
with a Lorentzian of width Γ1s corresponding to the total
width of the 1s state. The value of Γ1s was then varied
until the resulting distribution corresponded to the mea-
sured line width Γmeas.

3p-1s of the X-ray transition (Table 1).
It was shown that the convoluted distribution is again a
Lorentzian to a very good approximation. This fact was
used in the fitting procedure by which Γmeas.

3p-1s was deter-
mined. With this method, the Doppler correction, defined
by (3), is found to be

∆3p = 0.12± 0.05. (26)

The error in (26) was determined by varying consecutively
the uncertainties of the three components of the kinetic en-
ergy distribution, as well as the uncertainty in (25). The
maximum value T1 of the low energy component was var-
ied between 0 eV and 1.8 eV; the latter value is the upper
limit of the determination of T1 from the analysis of the
experiment [37] (T1 = 1.5 ± 0.3 eV). The resulting varia-
tion in ∆3p is displayed in the last column of Table 4. Also
shown in the last column of Table 4 are the variations
coming from the uncertainties of YKβ(73) and YKβ(34),
respectively. The variation in ∆3p due to the uncertainty
of YKβ(15 bar) is ±0.014. The quoted error in (26) is the
quadratic sum of all variations.

The present value of ∆3p is displayed in Table 5, along
with our earlier determinations of the Doppler correction
which were based on entirely different methods.

Table 5 shows that the earlier Doppler corrections are
not incompatible (within their uncertainties) with the
present determination. They are based in part on exper-
iments with liquid hydrogen targets. For the reasons dis-
cussed in Sect. 3.3 we adopt the value of the present work.

This section clearly shows that an improved determi-
nation of the total decay width Γ1s (3) requires not only
an improved experimental determination of the transition

Table 5. Doppler correction to the measured 3p–1s transition
line width

∆3p reference

0.12 ± 0.05 this work
0.07 ± 0.04 [12]
0.05 ± 0.05 [9,28]

line width but also substantial theoretical work on the
atomic cascade processes (see also Sect. 4.1).

4 Results and conclusions

4.1 Pionic hydrogen

The hadronic πN s-wave scattering amplitudes for elastic
scattering and single charge exchange are evaluated from
the measured transition energy Emeas.

3p-1s (14) and transition
line width Γmeas.

3p-1s (6).
In order to arrive at the strong-interaction shift ε1s (1),

we need the electromagnetic transition energy (Eel.magn.
3p-1s )

[16]; Table 6 shows the various contributions.
With the measured transition energy (14) and the cal-

culated electromagnetic transition energy of Table 6 we
obtain the strong-interaction shift (1)

ε1s = −7.108± 0.013(stat.)± 0.034(syst.) eV. (27)

Using relation (2), we find with the value (27) the hadronic
s-wave scattering amplitude for elastic π−p scattering

aπ−p→π−p = (0.0883± 0.0008)m−1
π , (28)

where statistical and systematic errors were added lin-
early.

From the measured transition line width Γmeas.
3p-1s (6)

and the Doppler correction ∆3p (26) (using relation (3)),
we obtain the decay width of the 1s state

Γ1s = 0.868± 0.040(stat.)± 0.038(syst.) eV. (29)

With relation (4), using the value (29), we find the
hadronic s-wave scattering amplitude for single charge ex-
change

aπ−p→π0n = (−0.128± 0.006)m−1
π . (30)

Again, statistical and systematic errors were added lin-
early.

4.2 Pionic deuterium

From a measurement of the 3p–1s X-ray transition of pi-
onic deuterium [11] and using the Deser formula [17], we
have determined the π−d scattering length [11]. The real
part was found to be

aπ−d = −(0.0259± 0.0011)m−1
π . (31)
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Table 6. Contributions (in eV) to the (calculated) electromagnetic transition
energy Eel.magn.

3p-1s [16]

Point-Coulomb, Klein-Gordon equation 2875.715 ± 0.007
Coulomb finite size effect (proton and pion) −0.102 ± 0.003
Vacuum polarization, order α2 (Uehling potential, finite size) 3.235 ± 0.001
Higher order contributions (HOC):
– Relativistic recoil and proton spin and anomalous magnetic
moment of the proton −0.047 ± 0.000
– Vacuum polarization order α3 0.018 ± 0.000
– Vertex correction −0.007 ± 0.003
Pionic atom recoil energy −0.004
Eel.magn.

3p-1s 2878.808 ± 0.008

A recent remeasurement of the 1s energy shift of pionic
deuterium [46] agrees with our value.

In order to combine the results from pionic hydrogen
and pionic deuterium one has to establish the relation be-
tween aπ−d and the πN isoscalar and isovector (s-wave)
scattering lengths b0 and b1, defined by (33). This relation
can be expressed as

aπ−d =
1 +mπ/mN

1 +mπ/md
2b0 + a

(higher order)
π−d , (32)

where in the first term (single scattering in the impulse
approximation) 2b0 is the sum of the amplitudes for π−p
and π−n elastic scattering (see (34)) and md,N,π are the
deuteron, nucleon and charged pion masses. The dominat-
ing second term in (32) summarizes all remaining (higher
order) contributions.

In our previous work [10,9,11], a(higher order)π−d and its
dependence on the πN scattering lengths has been taken
from the review paper of Thomas and Landau [47] and
private communications with Thomas [9].

In the meantime, the problem of relating the π−d scat-
tering length to the πN interaction at threshold has at-
tracted several workers, leading to substantial progress.
Baru, Kudryavtsev and Tarasov published results of a sys-
tematic investigation based on multiple scattering theory
[48,49]. An extensive study of the problem by Ericson,
Loiseau and Thomas is in progress [50]; preliminary re-
sults have been reported at conferences [51–53]. Moreover,
Beane, Bernard, Lee and Meissner have established the re-
lation between the isoscalar πN and the π−d scattering
length, to third order in chiral perturbation theory [54].

In view of these recent developments, the calculations
of Thomas and Landau [47], which was the basis of our
earlier evaluation of the π−d scattering length, is not state
of the art anymore, as is discussed in [48].

In our present evaluation of the π−d scattering length,
we follow the theoretical work of Baru and Kudryavtsev,
supplemented by a recent estimate of these authors for the
form factor correction to the double scattering term [55].
We compare our results with the works of Ericson et al.
[50] and Beane et al. [54] at the end of Sect. 4.3.

As summarized by Baru and Kudryavtsev [48], there
are two main contributions to aπ−d from s-wave scatter-
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Fig. 10. Constraints on the scattering lengths b0 and b1 im-
posed by the measured strong-interaction shift and width of
the 1s state of pionic hydrogen and the 1s shift of pionic deu-
terium (details see text)

ing, namely the first term in (32) (single scattering in the
impulse approximation) and the double scattering con-
tribution with the exact πN amplitude and nucleons at
fixed centers. In addition, there are two significant terms
arising from p-wave π−N scattering, a single scattering
contribution and a p- and s-wave interference contribu-
tion in double scattering. A small correction for multiple
scattering effects was also obtained. The various contribu-
tions, all adding up to a(higher order)π−d in (28), are displayed
in Table 7. They are calculated with b0 = −0.0012m−1

π ,
b1 = −0.0895m−1

π (values close to the scattering lengths),
c0 = 0.209m−3

π , c1 = 0.177m−3
π , and taken from Table 3 of

[48], representing the average of the “Machleidt 1”- and
“Machleidt 2”-deuteron wave functions4. The additional
correction (not contained in [48]) for non-point-like inter-

4 Note, that the higher order corrections are functions of b0

and b1. The values given in Table 7 illustrate the magnitude
of the various contributions. These values cannot be used di-
rectly to obtain e.g. the central line of the deuterium band
in Fig. 10 from (32). The central line of the deuterium band
results from constraining the calculated corrections with the
value (31), using (32) [48]
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Table 7. Contributions to a
(higher order)
π−d

[48] in units of m−1
π

(see text)

Double scattering (s-wave) −0.0254
p-wave single scattering 0.0052
p-s-wave interference in double scattering −0.0040
multiple scattering 0.0010
(form factor correction 0.0029 [55])

a
(higher order)
π−d

−0.0232

action in double scattering [55], called “form factor cor-
rection”, is also shown in Table 7 (in parenthesis).

Based on these calculations and the measured value
(31) of the π−d scattering length, we have used the rela-
tion (32) to establish a constraint between the πN scat-
tering lengths b0 and b1. This constraint is shown as the
nearly horizontal band in the b0–b1 plot of Fig. 10 (“deu-
terium shift”).

The central curve of the band corresponds to aπ−d =
−0.0259m−1

π (31) and c = 3mπ for the off-energy-shell
parameter of the deuteron wave function [48]. The upper
and the (asymmetrical) lower curve of the deuterium band
are estimates of the uncertainty of the theoretical calcu-
lations for the higher order terms. For the upper curve
we follow [48] and assign the value c = 3.5mπ to the pa-
rameter of the deuteron wave function. The lower curve
corresponds to adding the form factor correction of Table 7
to ahigher orderπ−d , using again the central value c = 3mπ for
the deuteron wave function parameter. This uncertainty
estimate is based on the following argument. According
to Kudryavtsev [56], their present value for the form fac-
tor correction could be partially canceled by higher or-
der terms. We therefore use (somewhat arbitrarily) their
present estimate of the form factor correction to indicate
the (present) uncertainty of the theoretical calculations.

The width of the deuterium band in Fig. 10 thus repre-
sents the theoretical uncertainties. The uncertainty origi-
nating from the deuterium shift measurement (31) is rep-
resented by the dotted curves in Fig. 10. The width of the
corresponding band is sizeably smaller than the width of
the theoretical band and will be neglected.

The slight inclination of the band is mainly due to
the dominating double scattering (s-wave) term which is
essentially proportional to b21.

The following aspects of the theoretical treatments re-
lating the measured strong-interaction 1s energy shift of
pionic deuterium to the πN scattering lengths should be
kept in mind.

(1) In all theoretical calculations isospin symmetry of the
strong interactions is assumed.
(2) The π−d scattering length was obtained from the 1s
energy shift using the Deser formula [17]. This implies that
the electromagnetic corrections in the pionic deuterium
system have been neglected. Rockmore [57] has estimated
the electromagnetic contributions to the difference of the
real parts of the scattering length aπ−d and aπ+d to be

−0.0015m−1
π . This is of the order of the experimental error

of aπ−d, (31).
(3) In the multiple scattering treatment of the relation
between aπ−d and the πN scattering lengths one problem
remains. A complete treatment of the so-called dispersion
or absorption correction is still missing (see discussion at
the end of Sect. 4.3).

Despite of the incomplete status of the theory of the
π−d system (items (2) and (3)), we will use the present re-
sult in the following analysis and discuss the implications
in the summary of this paper.

4.3 Isospin symmetry test
and the πN scattering lengths

The amplitude of the most general isospin-symmetric πN
interaction at threshold is completely determined by two
real numbers; it is of the form

fπN = b0 + b1 τ · t, (33)

where 1
2τ and t are the nucleon and pion isospin opera-

tors, respectively, b0 is the isoscalar and b1 the isovector
scattering length. These scattering lengths are related to
the hadronic s-wave amplitudes for π−p elastic scattering
and SCX by

aπ−p→π−p = b0 − b1 (aπ−n→π−n = b0 + b1), (34)

and
aπ−p→π0n =

√
2b1. (35)

In addition to the constraint in the b0–b1 plot of Fig. 10
called “deuterium shift” (Sect. 4.2), we obtain two more
independent constraints on b0 and b1 which are based on
the pionic hydrogen measurements. From the elastic scat-
tering amplitude (28), using relation (34), we obtain the
second constraint in the b0–b1 plot of Fig. 10, designed by
“hydrogen shift”, and from the SCX amplitude (30), using
relation (35), we obtain the constraint called “hydrogen
width”.

Since all three independent observables were analyzed
assuming isospin symmetry of the strong interaction, and
because the most general isospin symmetric interaction
is determined by two (real) scattering lengths, the b0–b1
plot of Fig. 10 represents an isospin symmetry test of the
strong interaction [58]. From the complete compatibility of
the three bands of Fig. 10 we conclude that, within present
uncertainties, the strong πN interaction (at threshold) is
isospin-symmetric. This statement holds to the level of
precision to which b1 is determined from the hydrogen
width, namely 5%.

If we now assume isospin symmetry of the strong in-
teraction to hold, then from a common fit to all three
constraints in Fig. 10, very precise values for the isoscalar
and isovector scattering lengths are obtained. The values
are

b0 = (−0.1+0.9−2.1)× 10−3m−1
π , (36)

b1 = (−88.5+1.0−2.1)× 10−3m−1
π . (37)
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Table 8. Chiral perturbation theory contributions to the scat-
tering lengths b0 and b1 (from [3]), in units 10−3m−1

π

1st order 2nd order 3rd order experiment

b0 0 LEC’s dependent 8.6 −0.1+0.9
−2.1

b1 −79.0 0 LEC’s dependent −88.5+1.0
−2.1

Since the uncertainties in (36) and (37) are at the 1% level
(of b1), the assumption stated above is relevant; the scat-
tering lengths (36), (37) thus represent “isospin-symmet-
ric” values. The scattering lengths (36), (37) are correlated
(see Fig. 10).

For completeness we also give the scattering lengths
deduced from the two hydrogen observables alone (i.e.
without inclusion of the deuterium data): b0 = −(2.2 ±
4.3)× 10−3m−1

π ; b1 = −(90.5± 4.2)× 10−3m−1
π . Note the

strong correlation between b0, b1 in this case; the correla-
tion coefficient is ρ01 = 0.98.

It is interesting to confront our values (36) and (37)
with evaluations of the scattering lengths with heavy
baryon chiral perturbation theory [3]. At threshold, the
chiral perturbation series is an expansion in powers of the
strong-interaction pion mass Mπ. The first-order contri-
bution is the current-algebra prediction of Weinberg:

b0 = 0, b1 = − 1
8πF 2

π

1
1 +mπ/mN

Mπ, (38)

where Fπ = 92.42 ± 0.26MeV [59] is the pion decay con-
stant, Mπ is taken to be the charged pion mass (mπ) and
mN (= mProton) is the nucleon mass. Some of the higher
order terms depend on low-energy constants (LEC’s) for
which there is no theoretical prediction, whereas others
are calculable.

Table 8 shows the individual contributions (up to 3rd
order5) to the scattering lengths b0 and b1, together with
our experimental values (32) and (33).

The following observations can be made.
(1) The current-algebra limit (1st order) is close to the
actual values of both scattering lengths.
(2) The difference between the 3rd order term and b0 is
larger than the magnitude of b0 itself, indicating a con-
vergence problem in the heavy-baryon chiral perturbation
series – even at threshold.
(3) The scattering lengths b0, b1 should provide stringent
constraints to the LEC’s entering the problem.

Finally, we address other recent determinations of the
scattering lengths.

First we compare the (unpublished) work of Ericson,
Loiseau and Thomas with our results. Their determina-
tion uses as experimental inputs the two shift measure-
ments only. The (unpublished) values for the scattering
lengths are [50]: b0 = (−1.2 ± 0.8) × 10−3m−1

π and b1 =
(−89.5± 1.3)× 10−3m−1

π (the two errors given in [50] are
added quadratically). These values are compatible with

5 Recently calculations up to 4th order have been performed
[6]

Table 9. Values for the dispersion integral J (40)

J [mb] reference

−1.072 [61]
−1.05 [62]
−1.051 [63]

−1.058+0.008
−0.014 average

ours, although there are differences in the calculations re-
lating the scattering lengths of the π−d to the πN system
[50]. The main difference seems to be that the p–s-wave in-
terference term (−0.0040 in Table 7) is small in their work
and a dispersion correction (absorption effect) of −0.0056
(in the same units) is added to a(higher order)π−d . The fact that
the calculated values of these effects in the two theoretical
procedures are very similar may not be entirely acciden-
tal. The p–s-wave interference term could contain at least
part of the absorption effect [55].

We now turn to the work of Beane et al. [54]. As men-
tioned earlier, these authors have established – in third
order chiral perturbation theory – the relation between
the scattering lengths aπ−d and b0. From their (7) one has
a
(higher order)
π−d = −0.0203m−1

π . Using (32) and (31) we ob-
tain b0 = −(2.6± 0.5)× 10−3m−1

π (their (8)). This result
again is compatible with ours. One should keep in mind,
however, that this value is of limited precision, because
the (dominant) double scattering term is treated to low-
est order only.

4.4 πN coupling constant
and Goldberger–Treiman discrepancy

The isovector scattering length b1 is related to the πN
coupling constant f by the GMO sum rule [60]

f2 =
1
2

(
1−

(
mπ

2mN

)2)[(
1 +

mπ

mN

)
mπ(−b1)−m2

πJ

]
,

(39)
where J is an integral over the difference between π±p
total cross sections

J =
1
4π2

∫ ∞

0

σπ−p − σπ+p√
q2 +m2

π

dq. (40)

(q is the laboratory momentum.) With the value of the in-
tegral (40) – using the relation (39) – the πN coupling con-
stant f2 can be determined from the scattering length b1.
Numerically, the relation (39) reads (with mN = mProton)

f2 = 0.5712mπ(−b1)− 0.02488 (mb−1J). (41)

Table 9 shows recently published results of evaluations of
the integral (40).

The uncertainty assigned to the average of the disper-
sion integral is such that all quoted values are inside the
error band6.

6 The (unpublished) value of Ericson et al. [50] for the dis-
persion integral is J = −1.083 ± 0.009 ± 0.031mb
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With the value (37) of the isovector scattering length
and the average from Table 9, we obtain from relation (41)
the πN coupling constant

f2 = 0.0769+0.0012−0.0006. (42)

It is interesting to compare this value with two other
recent determinations of the πN coupling constant. The
most recent partial-wave and dispersion relation analysis
value of the VPI/GW group (preliminary analysis) is [64]
f2 = 0.0760 ± 0.0001(stat.) ± 0.0004(syst.). The analysis
of the low-energy πN scattering data based on the ex-
tended tree-level model of the πN interaction yields the
value [65] f2 = 0.0766 ± 0.0011. The results of all three
determinations agree perfectly.

The Goldberger–Treiman (GT) relation is an impor-
tant tool for testing chiral symmetry of QCD [66]. The
GT relation connects the πN coupling constant with the
axial charge of the nucleon; it may be written as

gπN =
gAmN

Fπ
(1 +∆GT), (43)

where
gπN =

2mN

mπ

√
4πf = 13.21+0.11−0.05 (44)

(in (44) the value (42) for f is used), and

gA = 1.2670± 0.0035 (45)

is the nucleon axial vector coupling constant [67]. The GT
discrepancy ∆GT is zero in the limit of vanishing quark
masses. Using the values (44), (45) and (46) we obtain
from (43) the GT discrepancy

∆GT = 0.027+0.012−0.008. (46)

This result may be compared with Leutwyler’s estimate
[66]: ∆GT 	 0.02. We should emphasize that this compar-
ison implies isospin symmetry of the strong interaction.

4.5 The nucleon sigma term

The determination of the sigma term is still a controversial
issue [68]. In this section we discuss the change of the
sigma term as a result of the new values of the scattering
length b0 and the πN coupling constant, with respect to
the Karlsruhe–Helsinki (KH) partial wave solution [69].
(All early determinations of the sigma term are based on
the KH solution [70–72].)

The nucleon sigma term is defined as the scalar form
factor (σ(0)) of the nucleon at zero momentum transfer
[68] and is of particular importance because it represents
the response of the nucleon mass to a change in the quark
masses [66]. The nucleon sigma term is experimentally ac-
cessible through πN scattering. The connection is pro-
vided by the isospin even D amplitude (from which the
pseudovector Born term is subtracted) D

+
, taken at the

unphysical Cheng–Dashen point:

Σ ≡ F 2
πD

+
(ν = 0, t = 2m2

π). (47)

According to a low energy theorem, Σ is nearly equal to
the scalar form factor of the nucleon at t = 2m2

π [68]:

Σ = σ(2m2
π) +∆R, 0 < ∆R < 2MeV. (48)

One then obtains σ(0) from Σ, see (48), and the relation
σ(2m2

π) − σ(0) 	 15MeV (which is assumed to be well
known [66]).

The dominant piece of Σ is given by the first two terms
in the subthreshold expansion of the D

+
amplitude

D
+
(ν = 0, t) = d+00 + d

+
01 · t+ · · · (49)

We write (47) as

Σ = Σd +∆D, (50)

where
Σd = F 2

π (d
+
00 + 2m2

πd
+
01), (51)

and ∆D 	 12MeV [71] is due to the higher order terms in
(49) and is assumed to be well known. The determination
of the sigma term is thus reduced to a determination of
the subthreshold parameters d+00 and d

+
01.

These coefficients have been expressed from dispersion
relations as [71,68]

d+00 = D
+
(mπ, 0) + JD(0), d+01 = E

+
(mπ, 0) + JE(0),

(52)
where JD(0), JE(0) are dispersion integrals. The subtrac-
tion constants D

+
(mπ, 0), E

+
(mπ, 0) depend on the scat-

tering length a+0+ ≡ b0, the scattering volume a+1+ and the
πN coupling constant:

D
+
(mπ, 0) = 4π(1 + x)b0 +

g2πNx
3

mπ(4− x2)
, (53)

E
+
(mπ, 0) = 6π(1 + x)a+1+ − g2πNx

2

m3
π(2− x)2

, (54)

where x = mπ/mN .
If we insert the KH values from Table 2.4.7.2 of [69],

b0 = −0.010m−1
π , a+1+ = 0.133m−3

π , using the relations
(52), (53), (54) as given in [71] in numerical form, we ob-
tain

Σd = 48MeV. (55)

We now determine the differences to Σd which arise
from the new values of b0 (36) and f2 (42), relative to
the KH values b0 = −0.010m−1

π and f2 = 0.079. These
differences ∆Σd will be independent of the values of the
dispersion integrals in (52) and of a+1+ in (54). From (51),
(52), (53), (54) we find with (36) and (42)

∆Σd(b0) =
(
9+1−2

)
MeV, ∆Σd(gπN ) =

(
4+1−2

)
MeV.

(56)
The errors assigned to the values in (56) reflect our un-
certainties on b0 and f2.

From this analysis we conclude that the nucleon sigma
term is sizeably increased as a result of the new values of
b0 and f2, by

∆Σd = ∆Σd(b0) +∆Σd(gπN ) =
(
13+2−4

)
MeV, (57)
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relative to the determinations based on the KH solution7.
Such an increase is not easy to account for theoretically
[68].

4.6 Summary and outlook

In the pionic hydrogen part of this paper, we describe our
last X-ray experiment, summarize the present knowledge
on the atomic cascade processes leading to the Doppler
correction factor and deduce the (πN) s-wave π−p elastic
and SCX scattering amplitudes at threshold. In the part
on pionic deuterium we summarize the present knowledge
on the theoretical relation between the π−d scattering
length and the πN scattering amplitude, use our earlier
experimental result on the π−d scattering length and de-
duce a constraint on the isoscalar (b0) and isovector (b1)
πN (s-wave) scattering lengths. We then combine the in-
formation from pionic hydrogen and deuterium and obtain
the following results:
(1) The measured scattering lengths are consistent with
the isospin symmetry of the strong πN interaction at
threshold, at the level of 5% (relative to b1).
(2) Under the assumption of isospin symmetry, the s-wave
scattering lengths b0 and b1 are determined at the 1–2%
level.
(3) The scattering lengths are remarkably close to the
current-algebra prediction.
(4) The b0 value indicates a convergence problem in the
heavy-baryon chiral perturbation series.
(5) From b1 the πN coupling constant

f2 = 0.0769+0.0012−0.0006

is obtained.
(6) The corresponding Goldberger–Treiman discrepancy
is

∆GT =
(
2.7+1.2−0.8

)
%.

(7) The sigma term Σd is larger by at least 9MeV as
compared to the KH value.

At the level of the scattering amplitudes, precisions
reached from our experiments are at the 1% level, which
seems to be unique in hadron physics. Unfortunately, these
precisions cannot be fully exploited because there seems
to be a lack of consensus among the theorists working on
the π−d system, e.g. on the issues of absorption and form
factor corrections. It should also be stressed that no sys-
tematic treatment of the electromagnetic corrections on
the π−d system is yet available. In view of the impor-
tant results shown here, it should be tempting to do more
theoretical work on the π−d system in order to improve
our present knowledge on such important items as the πN
coupling constant and the sigma term.

On the experimental side, a new collaboration has been
formed at PSI to continue precision X-ray experiments on
pionic hydrogen and deuterium. In their recent proposal
[74], the ambitious goal of measuring both, shift and width
of pionic hydrogen at the 1% level is formulated.

7 See also the discussion on the sigma term in [73]
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